

### Small Aortic Root Dilemma! Long-term results of AVR with posterior root enlargement

Alireza A. Ghavidel MD Professor of Cardiovascular Surgery

Esfand 1395, Feb. 2017





### Prosthesis type

### EOA,

**Porcelain Aorta** 

**Root injury** 

**Small Root** 

### Undesirable effects of P-P Mismatch



### Controversies

The clinical relevance of a small difference in gradient and otherwise asymptomatic patients is unclear. Lower IEOA is predictor of poorer NYHA early after AVR, but not important during 7-year follow up.



ADULT CARDIAC SURGERY:

To participate in The Annals of Thoracic Surgery CME Program, please visit http://cme.ctsnetjournals.org.

#### Prosthesis-Patient Mismatch After Aortic Valve Replacement: Impact of Age and Body Size on Late Survival

Marc R. Moon, MD, Michael K. Pasque, MD, Nabil A. Munfakh, MD, Spencer J. Melby, MD, Jennifer S. Lawton, MD, Nader Moazami, MD, John E. Codd, MD, Traves D. Crabtree, MD, Hendrick B. Barner, MD, and Ralph J. Damiano Jr, MD

Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri

P-P mismatch defined as IEOA<0.75 has a negative impact on survival in young patients but this impact is minimal in >60 yr patients (P<0.005).

#### Prosthesis size and long-term survival after aortic valve replacement

The Journal of Thoracic and Cardiovascular Surgery · Volume 126, Number 3

In a meta-analysis of 13258 patients undergoing AVR with small valve size showed that operative mortality increases by less than 1% in 10% of cases with small prosthesis BUT

# Does not reduce midterm or long term survival.

### Controversies;

Valve related mortality & morbidity are higher in P-P mismatch group.

Overall survival is the same between patients with & without P-P mismatch Res Cardiovasc Med. 2016 May; 5(2): e29038.

doi: 10.5812/cardiovascmed.29038

Published online 2016 March 5.

Research Article

Moderate Patient-Prosthesis Mismatch Has No Negative Effect on Patients' Functional Status After Aortic Valve Replacement With CarboMedics Prosthesis

Alireza Alizadeh-Ghavidel,<sup>1</sup> Rasoul Azarfarin,<sup>1,\*</sup> Azin Alizadehasl,<sup>2</sup> Ali Sadeghpour-Tabaei,<sup>1</sup> and Ziae Totonchi<sup>1</sup>



## Comparison of Functional Status based on postoperative Residual Trans-aortic gradient



### **Comparison of Functional Status based on IEOA**



### **Surgical options**



Root enlargement Low profile prosthesis

Ross/konno procedure Stentless or sutureless tissue valves

**Root replacement** 

#### Mortality and Morbidity After Aortic Root Replacement: 10-Year Experience

Alireza A <u>Ghavidel</u>, MD, Mohammad B <u>Tabatabaei</u>, MD, Mohammad A <u>Yousefnia</u>, MD, Gholam-Reza <u>Omrani</u>, MD, Nader <u>Givtaj</u>, MD, Kamal <u>Raesi</u>, MD

#### Table 4. Causes of Early and Late Mortality

| Deaths                 | No. of<br>Patients | %    |
|------------------------|--------------------|------|
| Early (hospital) death | 11                 | 13.3 |
| Cardiac failure        | 5                  | 6.0  |
| Multiorgan failure     | 3                  | 3.6  |
| Bleeding               | 2                  | 2.4  |
| Arrhythmia             | 1                  | 1.2  |
| Late death             | 2                  | 2.4  |
| Myocardial infarction  | 1                  | 1.2  |
| Unknown                | 1                  | 1.2  |

(Asian Cardiovasc Thorac Ann 2006;14:463-6)

#### Table 5. Postoperative Complications No. of Complication Patients % Bleeding 20 24.1Bleeding requiring reexploration 16 19.3 Neurocognitive problems 17 20.5 Cerebrovascular accident 4.8 Tachyarrhythmia 16.9 Acute renal failure 1012.0 Wound infection 2.4 Respiratory complication 10.8 Perioperative myocardial infarction 4.8 Paravalvular leak 7.2 Mediastinitis 0 Endocarditis 0 Prosthetic valve malfunction 0 Thromboembolism 0

#### Classic Konno-Rastan Procedure: Indications and Results in the Current Era

Mohammad B <u>Tabatabaie</u>, MD, Alireza A <u>Ghavidel</u>, MD, Mohammad A <u>Yousefnia</u>, MD, Saeed <u>Hoseini</u>, MD, Seyed H <u>Javadpour</u>, FETCS, Kamal <u>Raesi</u>, MD

Dramatic reduction of the systolic TVG  $91.3 \pm 39.3$  to  $28.1 \pm 17.7$  mm Hg ( p < 0.001)

Residual VSD 8.6%

CHB incidence 15.1%

Mortality rate 11.5%

SCV

Original Article

Long-term results of aortic valve replacement with posterior root enlargement

Alireza Alizadeh Ghavidel<sup>1</sup>, Gholamreza Omrani<sup>2</sup>, Mitra Chitsazan<sup>3</sup>, Ziae Totonchi<sup>4</sup> and Nader Givtaj<sup>2</sup>



Asian Cardiovascular & Therselic Annals 2014, Vol. 22(9): 1059–1065 IC The Author(x): 2014 Reprints and parmissions tagepuls could/ournals/Fermissions.rsv DOI: 10.1177/0219492314528923 san.sagepuls.com



### A retrospective study 1998-2011

### Mean follow up 58 Months

### Method & Material



 Aortic valve surgeries N=103 2.7%

• AVR

N=3728

 Post. Root enlargement

### **Previous cardiac operations**

| Procedure                            | No. of patient |  |  |
|--------------------------------------|----------------|--|--|
| Valvotomy or valvoplasty             | 15 (14.6%)     |  |  |
| Subvalvular resection                | 4 (3.9%)       |  |  |
| PDA closure                          | I (1.0%)       |  |  |
| AVR                                  | 6 (5.8%)       |  |  |
| AVR + MVR                            | 2 (1.9%)       |  |  |
| AVR + CoA repair                     | I (1.0%)       |  |  |
| AVR + MVR + TVR                      | I (1.0%)       |  |  |
| AVR + VSD closure                    | I (1.0%)       |  |  |
| MVR                                  | I (1.0%)       |  |  |
| Closed MV commissurotomy             | 4 (3.9%)       |  |  |
| Subvalvular resection + CoA repair   | I (1.0%)       |  |  |
| Subvalvular resection + PDA closure  | 2 (1.9%)       |  |  |
| Valvotomy + VSD closure              | 2 (1.9%)       |  |  |
| Valvotomy + PDA closure + CoA repair | 1 (1.0%)       |  |  |
| CABG (familial hypercholesterolemia) | I (1.0%)       |  |  |

### **Redo surgery**

42%

### **Additional Operations**

| Procedure                                                                                                                                                           | No. of patients                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1VR                                                                                                                                                                 | 12 (11.7%)                                                      |
| MVR+TV repair                                                                                                                                                       | 5 (4.9%)                                                        |
| Open MV commissurotomy                                                                                                                                              | 4 (3.9%)                                                        |
| lyomectomy                                                                                                                                                          | 16 (15.5%)                                                      |
| MVR + myomectomy                                                                                                                                                    | 4 (3.9%)                                                        |
|                                                                                                                                                                     |                                                                 |
| MVR+TV commissurotomy                                                                                                                                               | 2 (1.9%)                                                        |
| 1VR+TV commissurotomy<br>Konno-Rastan 4 (2.<br>CABG                                                                                                                 | 2 (1.9%)<br>9%)<br><u>3 (2.9%)</u>                              |
| MVR + TV commissurotomy<br>Konno-Rastan 4 (2.<br>CABG<br>/SD closure + MV repair                                                                                    | 2 (1.9%)<br>9%)<br>3 (2.9%)<br>  (1.0%)                         |
| MVR + TV commissurotomy<br>Konno-Rastan 4 (2.<br>CABG<br>VSD closure + MV repair<br>Konno-Rastan procedure                                                          | 2 (1.9%)<br>9%)<br>3 (2.9%)<br>1 (1.0%)<br>4 (3.9%)             |
| MVR + TV commissurotomy<br>Konno-Rastan 4 (2.<br>CABG<br>VSD closure + MV repair<br>Konno-Rastan procedure<br>Ascending aorta and hemiarch<br>replacement under TCA | 2 (1.9%)<br>9%)<br>3 (2.9%)<br>1 (1.0%)<br>4 (3.9%)<br>1 (1.0%) |



### **AVR Indications**



| Indication                                                   | No. of patients |  |
|--------------------------------------------------------------|-----------------|--|
| AS                                                           | 16 (15.5%)      |  |
| AR                                                           | 6 (5.8%)        |  |
| AS + AR                                                      | 36 (35.0%)      |  |
| AS + MS                                                      | 2 (1.9%)        |  |
| AS + MR                                                      | 5 (4.9%)        |  |
| AS + AR + MS                                                 | 6 (5.8%)        |  |
| AS + AR + MR                                                 | 1 (1.0%)        |  |
| AS + AR + MS + MR                                            | 2 (1.9%)        |  |
| AS + AR + MS + TR                                            | 3 (2.9%)        |  |
| AS + AR + MR + MS + TS + TR                                  | 3 (2.9%)        |  |
| AR + MR                                                      | I (1.0%)        |  |
| AR + MS                                                      | 5 (4.9%)        |  |
| AS+AR+CAD                                                    | 1 (1.0%)        |  |
| Supravalvar + valvar AS                                      | I (1.0%)        |  |
| Native AV endocarditis                                       | 7 (6.8%)        |  |
| Patient-prosthesis mismatch                                  | 3 (2.9%)        |  |
| rosthetic AV Malfunction I (1.0%                             |                 |  |
| Prosthetic AV malfunction + MS                               | 3 (2.9%)        |  |
| AS + Hypoplastic ascending<br>and proximal arch + severe CoA | I (1.0%)        |  |

### Surgical technique



#### Improvement of funcional class in all survivors





### Surgical results

No pericardial patch-related complications (calcification, Shrinkage, patch infection)

No aortic pseudoaneurysm was seen during long-term follow-up.

Non-treated autologous pericardium can be used safely in patients undergoing posterior aortic root enlargement





### Early and late morbidity

| Post op bleeding/ re-exploration    | 8 Patients |
|-------------------------------------|------------|
| Late PE                             | 8          |
| Mitral valve distortion and mild MR | 5          |
| Paravalvular leakage                | 3          |
| Need for MVR                        |            |
| PPM need                            | 1          |
| CVA                                 |            |
| Prosthetic valve endocarditis       | Nore       |
| Need for Re-operation               | None       |
| Root dilatation or pseudoaneurysm   | Note       |

# Characteristics of patients with early and late mortality.

| Uncable                            | Early mortality                 | (<30 days)                                            |                           |                     |        |           |                                          |                          |                              | Late mortal                  | er.                     |
|------------------------------------|---------------------------------|-------------------------------------------------------|---------------------------|---------------------|--------|-----------|------------------------------------------|--------------------------|------------------------------|------------------------------|-------------------------|
| Patient no.                        | Patient 1                       | Patient 2                                             | Patient 3                 | Patient 4           | P      | Patient 7 | Pacient 8                                | Patient 9                | Patient 10                   | Patient 11                   | Patient 12              |
| Age (years)                        | 28                              | 45                                                    | 75                        | 29                  | 7      | ¥.        | 20                                       | 46                       | 67                           | 74                           | 14                      |
| Sex                                | Hale                            | Female                                                | Formale                   | Male                |        | ¥.        | Temale                                   | Female                   | Female                       | Female                       | Male                    |
| 85A (m²)                           | 1.85                            | 1.50                                                  | 1.60                      | 1.85                | remai  |           | 1.30                                     | 1.65                     | 1.45                         | 1.55                         | 1.20                    |
| Previous<br>cardiac<br>surgery     | AVR MVR                         | MV RAVR TVR                                           | None                      | None                | е      |           | None                                     | AVR                      | None                         | None                         | None                    |
| indication<br>for surgery          | Endocarditix                    | Prosthetic<br>AV malfunction MS                       | AS MR                     | AST                 | gender | •         | a la | AV malfunction MS        | AS                           | AS AI MS                     | Endecaries              |
| Concomitant<br>operation           | MVR                             | MV thrombectomy TVR                                   | Open MV<br>commissuroeomy | $\leftarrow$        |        |           | естоний                                  | MVR TV<br>commissurocomy | None                         | MVR                          | None                    |
| Valve cypie                        | Carbornedics                    | Carbornedics                                          | Sc. jude                  |                     | ΔΟΧ>   |           | des                                      | Carbonodics              | St. Jude                     | St. jude                     | St. Jude                |
| Valve size                         | 21                              | 21                                                    | 21                        |                     |        |           |                                          | 21                       | 19                           | 21                           | 21                      |
| Patch                              | Pericandial                     | Pericardial                                           | Decron                    |                     | 100    |           |                                          | Dacron                   | Dacron                       | Pericardial                  | Pericardial             |
| CPS time (min)                     | 187                             | 250                                                   | 191                       |                     | 100    |           |                                          | 311                      | 297                          | 155                          | 85                      |
| AoX time (min)                     | 132                             | 110                                                   | 161                       |                     | min    |           |                                          | 180                      | 239                          | 121                          | 70                      |
| Complication                       | CVA.                            | None                                                  | Surgical                  |                     |        |           |                                          | <b>A1G</b>               | None                         | None                         | Pericardial<br>effusion |
| Cause of death                     | Sepsis                          | Acute<br>perioperative MI                             | Uny<br>bi                 |                     |        |           |                                          |                          | LCOS                         | CVA                          | CVA                     |
| Al: Aortic insuf<br>cardiac output | ficiency: AoX:<br>syndrome: MI: | iortic crossclamp; AS: A<br>myocardial Infarction; MV | Ade<br>Pro                | ditional<br>ocedure |        | F         | Redo                                     | VSD: V                   | cerebrovasc<br>entricular se | ular acciden<br>ptal defect. | : LCOS: lov             |

### **Overall Mortality rate**



#### ne Shared Responsibility of Medical Necessity

#### Disadvantages

#### Advantages



#### **Patients**

#### operator



Availability of devices

EOA of prosthesis

Surgeon's experience



### **Old Ages**

### New generation bioprosthesis

Stentless tissue valves

Sutureless bioprosthesis

Manougian



# Ignore some degrees of mismatch in selected or high risk patients



Systematic review/ meta-analysis Papers 1964-2014 VOL. 9, NO. 8, 2016 ISSN 1936-878X/\$36.00 http://dx.doi.org/10.1016/j.jcmg.2015.10.026

### Predictors and Outcomes of Prosthesis-Patient Mismatch After Aortic Valve Replacement



|                                  | Moderate     | Severe when <0.65       |
|----------------------------------|--------------|-------------------------|
| Mild when                        | between 0.85 |                         |
| iEOA >0.85<br>cm /m <sup>.</sup> | and 0.65     | Main outcome: Mortality |



### Aortic root enlargement: What are the operative risks?

Jayesh Dhareshwar, MD,<sup>a</sup> Thoralf M. Sundt III, MD,<sup>a</sup> Joseph A. Dearani, MD,<sup>a</sup> Hartzell V. Schaff, MD,<sup>a</sup> David J. Cook, MD,<sup>b</sup> and Thomas A. Orszulak, MD<sup>a</sup>

Aortic root enlargement itself does not increase operative risk, al- though it is most often required among high-risk patients.

Surgeons should not be reluctant to enlarge the aortic root to permit implantation of adequately sized valve prostheses.

The Journal of Thoracic and Cardiovascular Surgery • October 2007

Post root

enlargement



Available online at www.sciencedirect.com



journal homepage: www.e-asianjournalsurgery.com

ORIGINAL ARTICLE

#### Aortic valve replacement in small patients\*

Y. Hisata <sup>a,\*</sup>, S. Yokose <sup>b</sup>, S. Hazama <sup>b</sup>, I. Matsumaru <sup>c</sup>, K. Eishi <sup>c</sup>

Small patients tended to be older and a higher proportion were women.

Favorable LV mass regression and EOAi in small patients.

Furthermore, no significant differences were found in the proportion of moderate and severe PPM.

Short- and mid-term outcomes were safe and favorable, suggesting that patients with small BSA can safely undergo AVR.

Asian

Journal of Surgery 1)moderate and severe PPM are associated with a 1.5- and 2.5-fold increase in the risk of 30-day mortality following AVR

2) severe PPM is associated with a 1.4-fold increase in overall mortality, whereas moderate PPM is not significantly associated with increased risk of overall mortality

3) the impact of PPM on mortality appears to be more important in patients <70 years of age, and/or undergoing concomitant CABG

4) moderate and severe PPM are associated with lesser regression of LV hypertrophy

5) the impact of PPM on mortality was less pronounced in patients with higher BMI.